The crystal structure of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and its decomposition product, $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Stuart J. Mills ${ }^{\text {a,b,*, }}$, Václav Petříček ${ }^{\text {c }}$, Anthony R. Kampf ${ }^{\text {b }}$, Regine Herbst-Imer ${ }^{\text {d }}$, Mati Raudsepp ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 4$
${ }^{\mathrm{b}}$ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
${ }^{\text {c }}$ Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, 18221 Praha, Czech Republic
${ }^{\text {d }}$ Department of Structural Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany

ARTICLE INFO

Article history:

Received 20 February 2011
Received in revised form
3 June 2011
Accepted 20 June 2011
Available online 28 June 2011

Keywords:

Crystal structure
Hydrothermal synthesis
Rare earth
Sulphate
Ytterbium
Yttrium

Abstract

$\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, synthesised by hydrothermal methods at $220(2)^{\circ} \mathrm{C}$, has been investigated by single crystal X-ray diffraction. $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ crystallises in space group $\mathrm{Cmc} 2_{1}$ and is isostructural with $\mathrm{Lu}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The crystal structure has been refined to $R_{1}=0.0145$ for 3412 reflections [$F_{o}>3 \sigma(F)$], and 0.0150 for all 3472 reflections. The structure of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is a complex framework of YbO_{6} octahedra, YbO_{8} and $\mathrm{YbO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ polyhedra and SO_{4} tetrahedra. Thermal data shows that $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ decomposes between 120 and $190^{\circ} \mathrm{C}$ to form $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. The structure of a twinned crystal of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ was solved and refined using an amplimode refinement in $R 3 c$ with an $R_{1}=0.0755$ for 8944 reflections $\left[F_{o}>3 \sigma(F)\right.$], and 0.1483 for all 16,361 reflections. $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ has a unique structural topology based on a 3D network of pinwheels.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

There has been much interest over the years in the study of rare-earth element (REE) salts; however, there has been little focus on structural investigations of these phases. Of all the basic REE sulphates known, only the octahydrates, $\mathrm{REE}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, have been fully characterised [1-10]. Some crystal structure refinements are known for the nonahydrates (La and Ce) [8,9,11,12], pentahydrates (Nd and Ce) [8,13] and tetrahydrates ($\mathrm{La}, \mathrm{Ce}, \mathrm{Nd}, \mathrm{Tb}$ and Er) $[5,14,15]$ and one trihydrate is known (Lu) [8]. No mono- or dihydrates have so far been reported. Thermal data is also lacking for most of these compounds.

The interest in the octahydrate compounds arose from an erroneous structure determination for the Pr-analogue [9] and its supposed pyroelectricity. Subsequent analyses showed it to be isostructural with all other $\mathrm{REE}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (e.g. [3]) and then remaining REE octahydrate analogues were then synthesised for completion [10]. The REE ions have different coordination environments in the different hydrates-in octahydrates and pentahydrates they are in 8 -fold coordination [1-10]; in enneahydrates they are in 8 - and 9 -fold coordination [8,9,11,12]; in tetrahydrates they are in 7 - and 8 -fold coordination [5,14,15]; whilst in

[^0]trihydrates they are in 6- and 8 -fold coordination [8]. Here we report the crystal structure of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and its decomposition product, $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.

2. Experimental

2.1. Synthesis of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was synthesised under mild hydrothermal conditions in Teflon-lined stainless steel autoclaves. The crystals were grown by mixing 0.4 g of reagent grade (Alfa, 99.9% purity) $\mathrm{Yb}_{2} \mathrm{O}_{3}$ with 1.9 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (as an 85% aqueous solution) and 12.8 g of distilled water, so that the autoclaves were filled to 50% of their inner volume. The mixture was kept at $220(2){ }^{\circ} \mathrm{C}$ under autogeneous pressure for 400 h . The autoclaves were then slowly cooled from $220^{\circ} \mathrm{C}$ to room temperature over 24 h . At the end of the reaction, all of the water had evaporated and a mat of transparent, colourless crystals lined the bottom of the autoclave. No other phases were observed in bulk PXRD diffractograms.

2.2. Formation of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

$\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ was formed by heating $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ crystals in an oven at $200(2)^{\circ} \mathrm{C}$ and $30(3) \%$ relative humidity for 1 h in open air. The $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ crystals turned translucent and
their colour changed from colourless to off-white with a yellowish hue.

2.3. Thermogravimetric analysis

TGA analyses were obtained from 38.32 mg of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The sample was analysed using a Perkin Elmer Pyris 6 TGA (Department of Chemistry, University of British Columbia) over the temperature range $50-900^{\circ} \mathrm{C}$, with a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ between 50 and $400^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C} / \mathrm{min}$ between 400 and $900^{\circ} \mathrm{C}$.

2.4. X-ray diffraction

2.4.1. $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

The single-crystal study was completed using a Bruker X8 Apex II single-crystal diffractometer at the Department of Chemistry, University of British Columbia. Irregular fragments of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ with the dimensions $135 \times$ 95×75 and $75 \times 55 \times 50 \mu \mathrm{~m}$, respectively, were used for collection of intensity data at 293 K (Table 1). The intensity data were processed with the Bruker Apex programme suite, with data reduction using the SAINT programme [16] and absorption correction by the multi-scan method using SADABS [17]. No twinning was observed for $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

The crystal structure of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was refined in space group $\mathrm{Cmc2}_{1}$ (No. 36), using SHELXL-97 [18] with the starting coordinates of $\mathrm{Lu}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ [8]. In the latter stages of the refinement, large thermal parameters indicated that W2 and W3 were split. Subsequent iterations showed that these split sites were fully occupied. The final model for the refinement converged to $R_{1}=0.0145$ for 3412 reflections [$F_{o}>3 \sigma(F)$], and 0.0150 for all 3472 reflections.

2.4.2. β - $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

The diffraction pattern of the $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ exhibited some very interesting features. All sharp diffraction spots can be indexed in a P-centred pseudo-cubic cell with $a \sim 12.8 \AA$ and angles that deviated away from $90^{\circ}[\alpha=90.065(2), \beta=90.055(2)$ and $\gamma=90.014$ $\left.(2)^{\circ}\right]$. The $R_{\text {int }}$ for the highest Laue symmetry compatible with the pseudo-cubic cell, i.e. $G=m \overline{3} m$, (lattice point group) gives a very high $R_{\text {int }}$ of 19.4% for observed reflections ($I>3 \sigma(I)$). Similarly for all subgroups of the lattice point group, except for monoclinic $2 / \mathrm{m}$ (directed along one of pseudo-cubic axes), the $R_{\text {int }}$ is also very high ($\sim 15 \%$). This means that the structure symmetry is either monoclinic or the sample is a twin, with volume fractions significantly deviated from the uniform distribution. The second possibility generally allows for higher symmetry, but averaging has to be carefully checked. Possible diffraction symmetry of twins has been discussed for example in [19], where it has been shown that the symmetry element of the chosen subgroup H can be used for averaging process only if conjugated elements $g h g^{-1}$ for all $g \in G$ are elements of H. This also means that the diffraction pattern has a full symmetry of H if it is a normal subgroup of G. The highest symmetrical candidates of G are thus $4 / \mathrm{mmm}$ and $\overline{3} \mathrm{~m}$. While the tetragonal space group contains the subgroup mmm (being invariant in the sense mentioned above), it similarly gives a high $R_{\text {int }}$ of 15%. On the other hand, averaging in $\overline{3} m 1$ and taking into account twinning give a $R_{\text {int }}$ of 4.85%.

Another interesting feature of the diffraction pattern is that after transforming reflections from the pseudo-cubic cell into the trigonal cell, all strong reflections (main reflections) fulfil the conditions $h=2 n$ and $k=2 n$. In accordance with modulated structures, we shall call them main reflections and the remaining ones satellite reflections. This allows us to solve first an average structure in a smaller cell and then complete it either by expanding the solution into the supercell and refining a model randomly displaced, or using $5 d$

Table 1
Crystallographic information for $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.

Crystal data		
Formula	$\mathbf{Y b}_{\mathbf{2}}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{O}$	$\mathbf{Y b} \mathbf{2}_{\mathbf{2}}\left(\mathrm{SO}_{4}\right)_{3}$
Cell parameters		
$a(\AA)$	13.5536(11)	18.1958(4)
b (\AA)	18.4678(17)	18.1958(4)
$c(\AA)$	9.2509(8)	22.2853(5)
$V\left(\AA^{3}\right)$	2315.5(3)	6400.9(8)
Z	8	24
Angles (${ }^{\circ}$)	90, 90, 90	90, 90, 120
Space group	$\mathrm{CmC2}_{1}$	R3c
Data collection		
Temperature (K)	293(2)	293(2)
λ (MoK α)	0.71073	0.71073
Crystal size	$135 \times 95 \times 75 \mu \mathrm{~m}$	$75 \times 55 \times 50 \mu \mathrm{~m}$
2θ max. (${ }^{\circ}$)	60.98	84.54
Reflection range	$-19 \leq h \leq 6 ;-26 \leq k \leq 26 ;-13 \leq 1 \leq 13$	$-34 \leq h \leq 34 ;-29 \leq k \leq 34 ;-41 \leq 1 \leq 36$
Total no. reflections	13,428	50,047
No. unique reflections	3472	16,361
No. reflections, $F>3 \sigma(F)$	3412	8944
Absorption correction (mm^{-1})	$\mu=16.683$	$\mu=12.066$
$R_{\text {merg }}$ on F^{2}	0.0228	0.0335
Refinement		
No. parameters refined	202	768
$R_{1}, F>3 \sigma(F)$	0.0145	0.0755
R_{1}, all data	0.015	0.1483
$\mathrm{w} R_{2}\left(F^{2}\right)$, all data	$0.0293{ }^{\text {a }}$	$0.0812^{\text {b }}$
GOF	1.072	2.15
$\Delta \sigma_{\text {min }}, \Delta \sigma_{\text {max }}\left(\mathrm{e} / \AA^{3}\right)^{3}$	-0.735, 1.314	-0.93, 1.25

[^1]superspace approach or applying an amplimode refinement. Note that presence of two modulation vectors ($1 / 2,0,0$) and ($0,1 / 2,0$) makes it impossible to use $4 d$ superspace unless the point group $\overline{3} m$ is reduced to m and additional twinning is introduced.

The solution of the average structure was first modelled in space group $P-1$ (No. 2) by transforming the orthorhombic structure of $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ [20] to triclinic using TRANSTRU from the Bilbao Crystallographic Server [21], and then refining the atom positions. The final refinement, which included several twin individuals, refined to $R_{1}=0.0960$ for 3061 reflections [$F_{o}>3 \sigma(F)$], with all atoms located.

A subsequent refinement in $R \overline{3} m$ (No. 166) is as a four-fold twin with the twinning matrices:

$$
\left.\left.\begin{array}{ll}
\mathbf{T}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & \mathbf{T}_{2}=\left[\begin{array}{rr}
1 / 3 & 2 / 3 \\
-1 / 3 & -4 / 3
\end{array}-8 / 3\right. \\
-1 / 3 & 1 / 3 \\
1 / 3
\end{array}\right]\right)
$$

Table 2
Atomic positions and displacement parameters.

atom	x	y	z	$U_{\text {eq }}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
(a) $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$										
Yb1	0.0	0.371241(9)	0.49989(2)	0.00761(4)	0.00658(9)	0.00789(8)	0.00837(7)	-0.00029(6)	0.0	0.0
Yb2	0.5	0.393394(9)	0.505950(15)	0.00665(4)	0.00494(9)	0.00755(8)	0.00746(7)	0.00045(7)	0.0	0.0
Yb3	0.297690(10)	0.152643(7)	0.540027(19)	0.01041(4)	0.00899(7)	0.01181(6)	0.01043(5)	0.00049(5)	-0.00052(5)	-0.00289(5)
S1	0.25155(6)	0.34165(4)	0.43078(8)	0.01004(16)	0.0057(5)	0.0136(4)	0.0108(3)	0.0003(3)	-0.0018(3)	-0.0015(3)
011	0.2536(3)	0.26831(15)	0.4852(4)	0.0428(10)	0.040(2)	0.0151(13)	0.073(3)	0.0147(16)	0.0123(17)	0.0043(14)
012	0.1646(2)	0.37787(15)	0.4921(5)	0.0303(7)	0.0074(15)	0.0268(14)	0.057(2)	-0.0112(14)	0.0026(16)	-0.0011(11)
013	0.3382(2)	0.38180(15)	0.4810(4)	0.0239(7)	0.0042(14)	0.0285(14)	0.039(2)	-0.0134(12)	-0.0026(12)	-0.0053(10)
014	0.2501(4)	0.3425(3)	0.2769(4)	0.0573(14)	0.054(4)	0.111(4)	0.0075(15)	0.0039(17)	-0.0078(15)	-0.024(2)
S2	0.0	0.25278(6)	0.22259(11)	0.0088(2)	0.0122(7)	0.0075(5)	0.0069(4)	-0.0009(3)	0.0	0.0
021	0.0	0.2667(2)	0.3795(4)	$0.0277(11)$	0.062(4)	0.0127(18)	0.0082(15)	-0.0053(13)	0.0	0.0
022	0.0	0.1750(2)	0.2036(4)	0.0338(12)	0.081(4)	0.0078(17)	0.0120(16)	-0.0021(13)	0.0	0.0
023	-0.0864(3)	0.2826(3)	0.1606(4)	0.0593(13)	0.051(3)	0.081(3)	0.046(2)	0.023(2)	-0.0102(18)	0.042(2)
S3	0.5	0.50235(8)	0.26752(11)	0.0120(2)	0.0175(6)	0.0102(4)	0.0084(4)	0.0021(4)	0.0	0.0
031	0.5	0.42249(17)	0.2536(3)	0.0155(8)	0.025(2)	0.0087(15)	0.0134(14)	0.0017(12)	0.0	0.0
032	0.5	0.51531(19)	0.4247(4)	0.0225(9)	0.045(3)	0.0138(18)	0.0087(14)	0.0001(12)	0.0	0.0
033	0.5860(2)	0.53489(14)	0.1958(3)	0.0181(5)	0.0168(16)	0.0175(12)	0.0201(12)	0.0058(10)	0.0030(10)	-0.0019(10)
S4	0.5	0.21418(6)	0.32561(11)	0.0084(2)	0.0108(6)	0.0082(5)	0.0060(4)	-0.0008(3)	0.0	0.0
041	0.5	0.28889(19)	0.3781(4)	0.0204(9)	0.035(3)	0.0079(16)	0.0178(16)	-0.0025(13)	0.0	0.0
042	0.5	0.2150(2)	0.1647(4)	0.0345(13)	0.081(4)	0.020(2)	0.0030(15)	-0.0008(13)	0.0	0.0
043	0.4118(3)	0.17700(18)	0.3693(3)	0.0335(8)	0.022(2)	0.0353(18)	0.0426(18)	-0.0161(15)	0.0177(13)	-0.0146(14)
S5	0.0	0.45959(6)	0.15919(11)	0.0110(2)	0.0126(7)	0.0074(5)	0.0129(5)	0.0023(4)	0.0	0.0
051	0.0	0.4395(2)	0.3105(4)	0.0351(13)	0.069(4)	0.023(2)	0.0127(17)	0.0090(16)	0.0	0.0
052	0.0	0.5393(2)	0.1507(4)	0.0262(11)	0.055(3)	0.0119(18)	0.0122(16)	0.0031(14)	0.0	0.0
053	0.0867(3)	0.4328(2)	0.0894(5)	0.0630(14)	0.061(3)	0.040(2)	0.088(3)	0.019(2)	0.053(2)	0.0268(19)
W1	0.1238(2)	0.15858(16)	0.5478(5)	0.0350(7)	0.0116(16)	0.0367(15)	0.057(2)	0.0149(15)	0.0008(17)	-0.0058(13)
W2a ${ }^{\text {a }}$	0.2303(7)	0.1441(4)	0.3054(7)	0.0287(15)						
W2b ${ }^{\text {a }}$	0.2509(6)	0.1095(5)	0.3132(10)	0.041(2)						
W3a ${ }^{\text {a }}$	0.2417(6)	0.0348(4)	0.5858(9)	0.0393(16)						
W3 ${ }^{\text {a }}$	0.2273(5)	0.0372(3)	0.5133(8)	0.0276(12)						
(b) $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$										
Atom	x	y	z	$U_{\text {iso }}$						
Yb11	0.0	0.0	0.153485	0.0121(6)						
Yb12	-0.49913(8)	-0.00638(7)	0.13397(10)	0.0121(6)						
Yb13	0.0	0.0	0.87434(13)	0.0121(6)						
Yb14	-0.50254(10)	-0.00723(6)	0.85675(7)	0.0121(5)						
S11	-0.9919(4)	-0.1387(4)	0.2636(3)	0.0102(14)						
S12	-0.4992(5)	-0.1481(4)	0.2487(3)	0.0102(12)						
S13	-0.9900(4)	-0.6316(4)	0.2532(3)	0.0102(15)						
S14	-0.5023(5)	-0.6313(4)	0.2508(3)	0.0102(12)						
011	-0.0028(15)	-0.1003(15)	0.2065(9)	0.026(5)						
012	-0.5222(16)	-0.1135(14)	0.1981(9)	0.026(5)						
013	-0.0039(14)	-0.6074(14)	0.1936(10)	0.026(5)						
014	-0.5234(15)	-0.5958(15)	0.1981(9)	0.026(5)						
015	-0.9603(15)	-0.8955(12)	0.8027(8)	0.026(4)						
016	-0.4717(13)	-0.9089(13)	0.7954(8)	0.026(5)						
017	-0.9536(13)	-0.3729(14)	0.8075(9)	0.026(5)						
018	-0.5059(15)	-0.4003(15)	0.7982(10)	0.026(5)						
021	-0.0054(12)	-0.9019(13)	0.0912(7)	0.013(4)						
022	-0.4627(10)	-0.8704(11)	0.1180(7)	0.013(3)						
023	-0.9839(12)	-0.3772(12)	0.0921(7)	0.013(4)						
024	-0.4901(12)	-0.3815(12)	0.0938(7)	0.013(4)						
025	-0.0549(12)	-0.1328(11)	0.8943(7)	0.013(4)						
026	-0.5113(12)	-0.0958(12)	0.9221(7)	0.013(4)						
027	-0.0019(13)	-0.5930(12)	0.9131(8)	0.013(4)						
028	-0.5114(12)	-0.5960(12)	0.9168(8)	0.013(4)						

[^2]converged to $R_{1}=0.0539$ for 1855 unique observed reflections． The relevant twinning fractions are 0．351（3），0．148（2）， $0.353(2)$ and $0.148(2)$ ，respectively．These values are strongly deviated from the uniform domain distribution as predicted．

All the three methods mentioned above were used to get a full description of the supercell．It has been found that the correct supercell space group is the non－cetrosymmetric space group $R 3 c$ （No．161）．For the commensurate model we have used the superspace group $X 3 c(\alpha, 0,0) 00(0, \alpha, 0) 00$ with $X=\{(0,0,0,0,0),(2 /$ $3,1 / 3,1 / 3,1 / 3,2 / 3),(1 / 3,2 / 3,2 / 3,2 / 3,1 / 3)\}$ and $\alpha=1 / 2$ ．Then the \mathbf{t} section $(1 / 3,-1 / 3)$ generates the supercell symmetry $R 3 c$ ．Both refinements gave identical results．

The third method，based on using amplimodes，seems to be a very elegant，time efficient and promising approach for handling simple commensurate cases such as this．There is no need to introduce a more complicated description in $5 d$ superspace，but it still makes it possible to start with some dominating distortions and using a step－ by－step approach to reach a final solution．This method is based on symmetry－mode analysis of distorted structures（e．g．［22，23］）and its application to crystallography［24］．The starting model，as obtained from the Bilbao Crystallographic Server［21］，has been used as an input to the new version of the programme Jana2006［25］．The structure has been successfully refined and it gives identical results as two previously mentioned methods．The magnitudes of displacive distortions as defined in［21］for individual atoms of the parent structure in \AA are

	Yb1	S1	O1	O2
Γ_{1}^{+}	$0.0142(12)$	$0.021(10)$	$0.41(4)$	$0.44(3)$
Γ_{2}^{-}	0.0	$0.633(19)$	$0.58(6)$	$0.92(5)$
F_{1}^{+}	$0.060(2)$	$0.221(17)$	$1.38(5)$	$1.37(5)$
F_{2}^{-}	$0.6933(12)$	$0.893(12)$	$2.06(4)$	$2.45(4)$

The refined atomic coordinates，site occupancies and displace－ ment parameters for both compounds are given in Table 2 and polyhedral bond distances in Table 3．It should be noted that several crystals of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ were examined and all showed the same features and twinning noted above．

3．Results and discussion

3．1．Crystal structure of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

The crystal－structure determination shows that $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is isostructural with $\mathrm{Lu}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$［8］－the only other known REE sulphate trihydrate．The structure of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is a complex framework of YbO_{6} octahedra， YbO_{8} and $\mathrm{YbO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ polyhedra and SO_{4} tetrahedra（Fig．1）．In this framework，none of the Yb polyhedra share elements with one another，rather they are linked via SO_{4} tetrahedra．The most tightly bonded fragment of the framework is an unusual zig－zag chain of edge－sharing $\mathrm{YbO}_{8}(\mathrm{Yb} 2)$ polyhedra and SO_{4} （S3）tetrahedra parallel to c（Fig．2）．Another interesting type of linkage in the structure involves triple SO_{4} tetrahedral links between opposing faces of Yb polyhedra．Such linkages exist between Yb 1 and Yb 2 ，between Yb 2 and Yb 3 and between Yb 3 and Yb 3 polyhedra． These triple linkages create a polyhedral cluster（Fig．3）peripheral to the edge－sharing chain．Note that the Yb 2 polyhedron in this cluster also participates in the edge－sharing chain．All other linkages between Yb polyhedra in the framework are via single SO_{4} tetrahedra．The only unshared polyhedral vertices correspond to the three $\mathrm{H}_{2} \mathrm{O}$ ligands of the Yb 3 polyhedron．

The average bond lengths for the Yb polyhedra are $\left\langle{ }^{\mathrm{Vl}} \mathrm{Yb} 1-\mathrm{O}\right\rangle$ 2．204，〈 $\left.{ }^{\text {VIII }} \mathrm{Yb} 2-\mathrm{O}\right\rangle 2.333$ and $\left\langle{ }^{\text {VIII }} \mathrm{Yb} 3-\mathrm{O}\right\rangle 2.302 \AA$ ．The bond

Table 3
Polyhedral bond lengths（ \AA ）．

（a） $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$						
Yb 1	052	2．162（3）		S1	014	1．424（3）
Yb1	051	2．159（4）		S1	011	1．445（3）
Yb1	042	2．204（4）		S1	013	1．464（3）
Yb1	021	2．228（4）		S1	012	1．469（3）
Yb1	012	2．236（3）				
Yb1	012	2．236（3）		〈S1－0 ${ }^{\text {¢ }}$		1.451
〈 Yb1－O〉		2.204		S2	023	1．415（3）
				S2	023	1．415（3）
Yb2	013	2．216（3）		S2	022	1．446（4）
Yb2	013	2．216（3）		S2	021	1．474（4）
Yb2	022	2．222（4）				
Yb2	041	2．264（3）		〈S2－0＞		1.438
Yb2	032	2．374（4）				
Yb2	031	2．395（3）		S3	033	1．470（3）
Yb2	033	2.490 （3）		S3	033	1．470（3）
Yb2	033	2．490（3）		S3	032	1．473（3）
				S3	031	1．480（4）
〈Yb2－O ${ }^{\text {－}}$		2.333				
				〈S3－0 ${ }^{\text {¢ }}$		1.473
Yb3	043	2．256（3）				
Yb3	023	2．268（3）		S4	043	1．436（3）
Yb3	053	2．270（3）		S4	043	1．436（3）
Yb3	011	2．275（3）		S4	041	1．463（4）
Yb3	014	2．286（3）		S4	042	1．489（4）
Yb3	W2B	2．333（9）				
Yb3	W3A	2．344（8）		〈S4－0 ${ }^{\text {¢ }}$		1.456
Yb3	W3B	2．349（6）				
Yb3	W2A	2．360（7）		S5	053	1．429（4）
Yb3	W1	2.360 （3）		S5	053	1．429（4）
				S5	051	1．448（4）
〈Yb3－O＞		2.302		S5	052	1．474（4）
				〈S5－0＞		1.445
（b）$\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$						
Yb11	011	2．15（2）	$\times 3$	S11	022	1．448（15）
Yb11	021	2．30（2）	$\times 3$	S11	015	1．458（20）
				S11	011	1．512（25）
〈Yb11－0＞		2.225		S11	026	1．533（27）
Yb12	014	2．146（20）		〈S11－O〉		1.488
Yb12	024	2．222（16）				
Yb12	023	2．225（23）		S12	018	1．387（27）
Yb12	022	2．247（20）		S12	021	1．437（18）
Yb12	012	2.280 （24）		S12	012	1．451（27）
Yb12	013	2．400（27）		S12	028	1．548（27）
〈Yb12－0〉		2.253		＜S12－0＞		1.456
Yb13	025	2．15（2）	$\times 3$	S13	023	1．368（16）
Yb13	015	2．30（5）	$\times 3$	S13	013	1．461（25）
				S13	017	1．465（21）
〈Yb13－0〉		2.225		S13	027	1．591（29）
Yb14	016	2．093（21）		〈S13－0〉		1.471
Yb14	027	2．114（24）				
Yb14	026	2．118（20）		S14	024	1．358（18）
Yb14	028	2．191（16）		S14	016	1．469（21）
Yb14	018	2．206（20）		S14	014	1．480（27）
Yb14	017	2．255（27）		S14	025	1．587（23）
〈Yb14－0＞		2.163		〈S14－O〉		1.474

lengths appear to be typical for Yb in octahedral $[26,27]$ or 8 －fold coordination［28］．Interestingly，in the $\mathrm{YbO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ polyhedra，the shortest bonds are all to O atoms（ $2.25-2.28 \AA$ ），whereas the longer bonds are to the split water molecules（ $2.33-2.36 \AA$ ）． Conversely，due to the connectivity of the structure，some of the SO_{4} tetrahedra exhibit shortened apical bonds in order to connect with the shortest $\mathrm{Yb}-\mathrm{O}$ bonds．The average bond lengths for the SO_{4} tetrahedra are $\langle\mathrm{S} 1-\mathrm{O}\rangle 1.451,\langle\mathrm{~S} 2-\mathrm{O}\rangle$ $1.438,\langle\mathrm{~S} 3-\mathrm{O}\rangle 1.473,\langle\mathrm{~S} 4-\mathrm{O}\rangle 1.456$ and $\langle\mathrm{S} 5-\mathrm{O}\rangle 1.455 \AA$ （Table 3）．S3，the only tetrahedron that is edge－sharing with a Yb polyhedron，is the only SO_{4} tetrahedra which is regular（i．e． with a S－O～1．47 \AA［29］）．

3.2. Decomposition of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ to $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

The decomposition of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ to $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is fairly straightforward. Decomposition begins at about $120^{\circ} \mathrm{C}$ then proceeds smoothly until about $190{ }^{\circ} \mathrm{C}$ when $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is

Fig. 1. Crystal structure framework of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ viewed down a.

Fig. 2. Zig-zag chain of edge-sharing YbO_{8} polyhedra and SO_{4} tetrahedra in $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.
formed (Fig. 4). No steps are seen at 145 or $170^{\circ} \mathrm{C}$ when the dihydrate or monohydrate would be expected to be stable. β $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ remains stable until about $830^{\circ} \mathrm{C}$ where it slowly starts to decompose. Conversion of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ into other phases such as $\mathrm{Yb}_{2} \mathrm{O}_{3}$ (with the release of sulphur and oxygen as gas) occurs above $900^{\circ} \mathrm{C}$. The most likely reaction sequence is
$\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow \mathrm{Yb}_{2} \mathrm{O}_{2}\left(\mathrm{SO}_{4}\right)+2 \mathrm{SO}_{2} \uparrow+\mathrm{O}_{2} \uparrow$
$\mathrm{Yb}_{2} \mathrm{O}_{2}\left(\mathrm{SO}_{4}\right) \rightarrow \mathrm{Yb}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2} \uparrow+1 / 2 \mathrm{O}_{2} \uparrow$
This reaction sequence has been observed in several of the other octahydrates [30-33].

3.3. Crystal structure of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

The crystal structure of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ involves 4 independent Yb and 4 S atoms, which form YbO_{6} octahedra and SO_{4} tetrahedra. The structural topology is a unique 3D network of pinwheels

Fig. 4. Thermogravimetric results for $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

Fig. 3. Polyhedral cluster of SO_{4} tetrahedra corner-sharing with Yb polyhedra in $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.
parallel to $\{001\}$ (Fig. 5). Each YbO_{6} octahedron has one SO_{4} tetrahedron corner-connected to each oxygen atom. The pinwheel, as described by [34], is modified in $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ such that instead of the tetrahedra pointing up or down they are twisted so that they can connect to other YbO_{6} octahedra (Fig. 5) via tetrahedral linkages (see below). In other structures, the pinwheels are either condensed to form layers, such as those observed in merwinite or bracelets, and as those observed in glaserite [34], but in both cases the tetrahedra remain regular.

It is worth comparing the structure of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ with that of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in terms of linkages between octahedra via tetrahedra. As for $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, none of the Yb polyhedra share elements with one another, rather they are linked via SO_{4} tetrahedra. However, in the structure of $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ there is no edge-sharing between SO_{4} tetrahedra and Yb octahedra. The triple SO_{4} tetrahedral links between opposing faces of Yb polyhedra exist only between Yb 11 and Yb 13 and between Yb 12 and Yb 14 octahedra along [001]. Each of the YbO_{6} octahedra links via double SO_{4} tetrahedral links to three other YbO_{6} octahedra forming sheets parallel to [001]. Although many intriguing structural fragments particularly involving the triple and double tetrahedral linkages could be noted, we have chosen the two pairs of triple-linked YbO_{6} octahedra viewed down [lllllll 110 with $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ vertical in Fig. 6.

Despite the slight distortion needed to maintain the connectivity, the average bond lengths for the YbO_{6} octahedra appear fairly typical and consistent with those observed for $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Table 3). The SO_{4} tetrahedra on the other hand are close to being perfectly regular for S13 and S14 and have mean average bond lengths about $1.47 \AA$ (Table 3).

It is interesting to contrast the differences between the crystalstructure of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ [20]. Despite the closeness in ionic bonding of Y and Yb in solids, the topology of $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are different. We note that the crystallographic properties of Y are generally closer to Ho than Yb (e.g. [35]). In $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, the YO_{6} octahedron has one triple SO_{4} link to one other YO_{6} octahedron and only two double links to two other YO_{6}

Fig. 6. Pairs of triple-linked YbO_{6} octahedra viewed down [11 100] with [0001] vertical in $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.

Fig. 7. Octahedral-tetrahedral linkages found in $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (and $\mathrm{Er}_{2}\left(\mathrm{SO}_{4}\right)_{3}$) and $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.

Fig. 5. Layer of pinwheels in $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ parallel to $\left\{\begin{array}{llll}0 & 0 & 1\end{array}\right\}$.
octahedra (Fig. 7). It is also interesting to note that in $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ the $\mathrm{S}-\mathrm{O}$ bond lengths are on the order of $0.02 \AA$ shorter than for $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, which leaves the S atoms overbonded in the Y compound. It should be noted however that this value does not take into account the error in the bond lengths. The overbonding appears to have been transferred somewhat from the S atoms to the Yb in $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ by the shortening of two of the $\mathrm{Yb}-\mathrm{O}$ bonds. Nevertheless, it appears that the local bonding environments are complex and simple bond valence models might not be able to adequately describe them.

Only two other $\mathrm{REE}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ phases have been previously reported. $\mathrm{Er}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ was described by [36,37] and is isostructural with $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, while $\mathrm{Nd}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ was reported by [38] and has a completely different structure and topology, which is comprised of NdO_{8} polyhedra and SO_{4} tetrahedra. Since $\mathrm{Er}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ have different symmetries and topologies to $\beta-\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, it would be worthwhile to investigate both $\mathrm{Tm}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $\mathrm{Lu}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ to further shed light on the change in these complex topologies and where these changes occur. It will also be interesting to see how many other systematic changes in symmetry and bonding exist within $\operatorname{REE}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ phases, especially within the transition from light-to-heavy REE.

Acknowledgments

Three anonymous reviewers provided helpful comments on the manuscript, which are greatly appreciated. Hao Qi and Mark MacLachlan (Department of Chemistry, UBC) are thanked for providing the TGA data. NSERC Canada is thanked for a Discovery Grant to Mati Raudsepp. Part of this study was funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County. Developing of the program Jana2006 is permanently supported by Praemium Academiae of the Czech Academy of Sciences.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2011.06.018.

References

[1] N.V. Podberezskaya, S. Borisov, Zh. Struk. Khim. 17 (1976) 186.
[2] L. Hiltunen, L. Niinistoe, Cryst. Struct. Commun. 5 (1976) 561.
[3] I.S. Ahmed Farag, M.A. El Kordy, N.A. Ahmed, Z. Kristallogr. 155 (1981) 165.
[4] H.-U. Hummel, E. Fischer, T. Fischer, P. Joerg, G. Pezzei, Z. Anorg. Allg. Chem. 619 (1993) 805.
[5] M.S. Wickleder, Z. Anorg. Allg. Chem. 625 (1999) 1548.
[6] H. Bartl, E. Rodek, Z. Kristallogr. 162 (1983) 13
[7] M.S. Wickleder, Chem. Rev. 102 (2002) 2011.
[8] P.C. Junk, C.J. Kepert, B.W. Skelton, A.H. White, Aus. J. Chem. 52 (1999) 601.
[9] E. Gebert Sherry, J. Solid State Chem. 19 (1976) 271.
[10] P. Held, M.S. Wickleder, Acta Crystallogr. E 59 (2003) i98.
[11] A. Dereigne, G. Pannetier, Bull. Soc. Chim. Fr. (1968) 174.
[12] E.B. Hunt, R.E. Rundle, A.J. Stosick, Acta Crystallogr 7 (1954) 106.
[13] L.O. Larsson, S. Linderbrandt, L. Niinistoe, U. Skoglund, Suomen Kemitilehti B 46 (1973) 314.
[14] A. Dereigne, J.M. Manoli, G. Pannetier, P. Herpin, Bull. Soc. Fr. Mineral. Cristallogr. 95 (1972) 269.
[15] S. Bede, Jiegon Huaxue 6 (1987) 70.
[16] Bruker, SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
[17] G.M. Sheldrick, SADABS, University of Göttingen, Germany, 2003.
[18] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112.
[19] E. Gaudin, V. Petříček, F. Boucher, F. Taulelle, M. Evain, Acta Crystallogr. B 56 (2000) 972.
[20] M.S. Wickleder, Z. Anorg. Allg. Chem. 626 (2000) 1468.
[21] M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. Kristallogr. 221 (2006) 15.
[22] H.T. Stokes, D.M. Hatch, J.D. Wells, Phys. Rev. B 43 (1991) 11010.
[23] D.M. Hatch, H.T. Stokes, Phys. Rev. B 65 (2001) 014113.
[24] D. Orobengoa, C. Capillas, M.I. Aroyo, J.M. Perez-Mato, J. Appl. Cryst. 42 (2009) 820.
[25] V. Petříček, M. Dušek, L. Palatinus, Jana2006. The Crystallographic Computing System, Institute of Physics, Prague, Czech Republic, 2006.
[26] W.F. Bradley, D.L. Graf, R.S. Roth, Acta. Cryst. 20 (1966) 283.
[27] O. Kamishima, K. Ohta, Y. Chiba, T. Hattori, J. Phys. Condens. Matter 13 (2001) 2455.
[28] D. Zhang, M. Johnsson, R.K. Kremer, Solid State Sci. 12 (2010) 536.
[29] F.C. Hawthorne, S.V. Krivovichev, P.C. Burns, Rev. Mineral 40 (2000) 1.
[30] W.W. Wendtlandt, T.D. George, J. Inorg. Nucl. Chem. 19 (1961) 245.
[31] M.W. Nathans, W.W. Wendtlandt, J. Inorg. Nucl. Chem. 24 (1962) 869.
[32] N. Bukovec, P. Bukovec, J. Siftar, Vestn. Slov. Kem. Drus. 22 (1975) 5.
[33] H.G. Brittain, J. Less-Common Met. 93 (1983) 97.
[34] P.B. Moore, Am. Mineral. 58 (1973) 32.
[35] R.D. Shannon, Acta Crystallogr. 32 (1976) 751.
[36] M.S. Wickleder, Z. Anorg. Allg. Chem. 624 (1998) 1347.
[37] S.P. Sirotinkin, A.N. Pokrovskii, L.M. Kovba, Kristallografiya 26 (1981) 219.
[38] S.P. Sirotinkin, V.A. Efremov, L.M. Kovba, A.N. Pokrovskii, Kristallografiya 22 (1977) 725.

[^0]: *Corresponding author at: Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Australia. Tel.: +61 39270 5064; fax: +61 392705043.

 E-mail address: smills@museum.vic.gov.au (S.J. Mills).

[^1]: ${ }^{\mathrm{a}} \mathrm{W}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{o}^{2}\right)+\left(0 P^{2}+0.5637 P\right)\right], P=\left[2 F_{c}^{2}+\operatorname{Max}\left(\mathrm{F}_{o}^{2}, 0\right)\right] / 3$.
 ${ }^{\mathrm{b}} 1 / w=\sigma^{2}(F)+(0.01 F)^{2}$.

[^2]: ${ }^{\mathrm{a}}$ Each split water site has 0.5 occupancy.

